§ 60.46 (iii) For affected facilities which fire both fossil fuels and nonfossil fuels, the F or F_c value shall be subject to the Administrator's approval. (6) For affected facilities firing combinations of fossil fuels or fossil fuels and wood residue, the F or F_c factors determined by paragraphs (f)(4) or (f)(5) of this section shall be prorated in accordance with the applicable formula as follows: $$F = \sum_{i=1}^{n} X_i F_i \text{ or } F_c = \sum_{i=1}^{n} X_i (F_c)_i$$ where: X_i =the fraction of total heat input derived from each type of fuel (e.g. natural gas, bituminous coal, wood residue, etc.) F_i or $(F_c)_i$ =the applicable F or F_c factor for each fuel type determined in accordance with paragraphs (f)(4) and (f)(5) of this section. n=the number of fuels being burned in combination. - (g) Excess emission and monitoring system performance reports shall be submitted to the Administrator semi-annually for each six-month period in the calendar year. All semiannual reports shall be postmarked by the 30th day following the end of each six-month period. Each excess emission and MSP report shall include the information required in §60.7(c). Periods of excess emissions and monitoring systems (MS) downtime that shall be reported are defined as follows: - (1) Opacity. Excess emissions are defined as any six-minute period during which the average opacity of emissions exceeds 20 percent opacity, except that one six-minute average per hour of up to 27 percent opacity need not be reported. - (i) For sources subject to the opacity standard of §60.42(b)(1), excess emissions are defined as any six-minute period during which the average opacity of emissions exceeds 35 percent opacity, except that one six-minute average per hour of up to 42 percent opacity need not be reported. - (ii) For sources subject to the opacity standard of §60.42(b)(2), excess emissions are defined as any six-minute period during which the average opacity of emissions exceeds 32 percent opacity, except that one six-minute average per hour of up to 39 percent opacity need not be reported. - (2) Sulfur dioxide. Excess emissions for affected facilities are defined as: - (i) Any three-hour period during which the average emissions (arithmetic average of three contiguous one-hour periods) of sulfur dioxide as measured by a continuous monitoring system exceed the applicable standard under § 60.43. - (3) Nitrogen oxides. Excess emissions for affected facilities using a continuous monitoring system for measuring nitrogen oxides are defined as any three-hour period during which the average emissions (arithmetic average of three contiguous one-hour periods) exceed the applicable standards under §60.44. [40 FR 46256, Oct. 6, 1975] EDITORIAL NOTE 1: For FEDERAL REGISTER citations affecting §60.45, see the List of CFR Sections Affected, which appears in the Finding Aids section of the printed volume and on GPO Access. EDITORIAL NOTE 2: At 65 FR 61752, Oct. 17, 2000, §60.45(f)(5)(ii) was amended by revising the words "ASTM D1826-77" to read "ASTM D1826-77 or 94." and by revising the words "ASTM D2015-77" to read "ASTM D2015-77 (Reapproved 1978), 96, or D5865-98." However, this amendment could not be incorporated because these words do not exist in paragraph (f)(5)(ii). ## § 60.46 Test methods and procedures. - (a) In conducting the performance tests required in §60.8, the owner or operator shall use as reference methods and procedures the test methods in appendix A of this part or other methods and procedures as specified in this section, except as provided in §60.8(b). Acceptable alternative methods and procedures are given in paragraph (d) of this section. - (b) The owner or operator shall determine compliance with the particulate matter, SO_2 , and NO_X standards in §§ 60.42, 60.43, and 60.44 as follows: - (1) The emission rate (E) of particulate matter, SO_2 , or NO_X shall be computed for each run using the following equation: $E=C F_d (20.9)/(20.9-\% 0_2)$ E = emission rate of pollutant, ng/J (1b/million Btu). - C = concentration of pollutant, ng/dscm (1b/dscf). - $%O_2$ = oxygen concentration, percent dry basis. - F_d = factor as determined from Method 19. - (2) Method 5 shall be used to determine the particular matter concentration (C) at affected facilities without wet flue-gas-desulfurization (FGD) systems and Method 5B shall be used to determine the particulate matter concentration (C) after FGD systems. - (i) The sampling time and sample volume for each run shall be at least 60 minutes and 0.85 dscm (30 dscf). The probe and filter holder heating systems in the sampling train shall be set to provide an average gas temperature of $160\pm14~^{\circ}\text{C}$ ($320\pm25~^{\circ}\text{F}$). - (ii) The emission rate correction factor, integrated or grab sampling and analysis procedure of Method 3B shall be used to determine the O_2 concentration (% O_2). The O_2 sample shall be obtained simultaneously with, and at the same traverse points as, the particulate sample. If the grab sampling procedure is used, the O_2 concentration for the run shall be the arithmetic mean of the sample O_2 concentrations at all traverse points. - (iii) If the particulate run has more than 12 traverse points, the O_2 traverse points may be reduced to 12 provided that Method 1 is used to locate the 12 O_2 traverse points. - (3) Method 9 and the procedures in §60.11 shall be used to determine opacity. - (4) Method 6 shall be used to determine the SO₂ concentration. - (i) The sampling site shall be the same as that selected for the particulate sample. The sampling location in the duct shall be at the centroid of the cross section or at a point no closer to the walls than 1 m (3.28 ft). The sampling time and sample volume for each sample run shall be at least 20 minutes and 0.020 dscm (0.71 dscf). Two samples shall be taken during a 1-hour period, with each sample taken within a 30-minute interval. - (ii) The emission rate correction factor, integrated sampling and analysis procedure of Method 3B shall be used to determine the O_2 concentration ($\%O_2$). The O_2 sample shall be taken simultaneously with, and at the same point as, - the SO_2 sample. The SO_2 emission rate shall be computed for each pair of SO_2 and O_2 samples. The SO_2 emission rate (E) for each run shall be the arithmetic mean of the results of the two pairs of samples. - (5) Method 7 shall be used to determine the NO_X concentration. - (i) The sampling site and location shall be the same as for the SO_2 sample. Each run shall consist of four grab samples, with each sample taken at about 15-minute intervals. - (ii) For each NO_X sample, the emission rate correction factor, grab sampling and analysis procedure of Method 3B shall be used to determine the O_2 concentration (% O_2). The sample shall be taken simultaneously with, and at the same point as, the NO_X sample. - (iii) The NO_X emission rate shall be computed for each pair of NO_X and O_2 samples. The NO_X emission rate (E) for each run shall be the arithmetic mean of the results of the four pairs of samples. - (c) When combinations of fossil fuels or fossil fuel and wood residue are fired, the owner or operator (in order to compute the prorated standard as shown in $\S 60.43(b)$ and 60.44(b)) shall determine the percentage (w, x, y, or z) of the total heat input derived from each type of fuel as follows: - (1) The heat input rate of each fuel shall be determined by multiplying the gross calorific value of each fuel fired by the rate of each fuel burned. - (2) ASTM Methods D2015-77 (Reapproved 1978), 96, or D5865-98 (solid fuels), D240-76 or 92 (liquid fuels), or D1826-77 or 94 (gaseous fuels) (incorporated by reference—see §60.17) shall be used to determine the gross calorific values of the fuels. The method used to determine the calorific value of wood residue must be approved by the Administrator. - (3) Suitable methods shall be used to determine the rate of each fuel burned during each test period, and a material balance over the steam generating system shall be used to confirm the rate. - (d) The owner or operator may use the following as alternatives to the reference methods and procedures in this section or in other sections as specified: ### § 60.46 - (1) The emission rate (E) of particulate matter, SO_2 and NO_X may be determined by using the F_c factor, provided that the following procedure is used: - (i) The emission rate (E) shall be computed using the following equation: $E=C F_c$ (100/%CO₂) #### where: - E=emission rate of pollutant, ng/J (lb/million Btu). - C=concentration of pollutant, ng/dscm (lb/dscf). - %CO₂=carbon dioxide concentration, percent dry basis. - F_c =factor as determined in appropriate sections of Method 19. - (ii) If and only if the average Fc factor in Method 19 is used to calculate E and either E is from 0.97 to 1.00 of the emission standard or the relative accuracy of a continuous emission monitoring system is from 17 to 20 percent, then three runs of Method 3B shall be used to determine the O_2 and CO_2 concentration according to the procedures in paragraph (b) (2)(ii), (4)(ii), or (5)(ii) of this section. Then if Fo (average of three runs), as calculated from the equation in Method 3B, is more than ±3 percent than the average F_o value, as determined from the average values of F_d and F_c in Method 19, i.e., F_{oa} =0.209 (F_{da}/F_{ca}), then the following procedure shall be followed: - (A) When F_o is less than 0.97 F_{oa} , then E shall be increased by that proportion under 0.97 F_{oa} , e.g., if F_o is 0.95 F_{oa} , E shall be increased by 2 percent. This recalculated value shall be used to determine compliance with the emission standard - (B) When F_o is less than 0.97 F_{oa} and when the average difference (d) between the continuous monitor minus the reference methods is negative, then E shall be increased by that proportion under 0.97 F_{oa} , e.g., if F_o is 0.95 F_{oa} , E shall be increased by 2 percent. This recalculated value shall be used to determine compliance with the relative accuracy specification. - (C) When F_o is greater than 1.03 F_{oa} and when the average difference \bar{d} is positive, then E shall be decreased by that proportion over 1.03 F_{oa} , e.g., if F_o is 1.05 F_{oa} , E shall be decreased by 2 percent. This recalculated value shall be used to determine compliance with the relative accuracy specification. - (2) For Method 5 or 5B, Method 17 may be used at facilities with or without wet FGD systems if the stack gas temperature at the sampling location does not exceed an average temperature of $160~^{\circ}\text{C}$ ($320~^{\circ}\text{F}$). The procedures of sections 2.1 and 2.3 of Method 5B may be used with Method 17 only if it is used after wet FGD systems. Method 17 shall not be used after wet FGD systems if the effluent gas is saturated or laden with water droplets. - (3) Particulate matter and SO_2 may be determined simultaneously with the Method 5 train provided that the following changes are made: - (i) The filter and impinger apparatus in sections 2.1.5 and 2.1.6 of Method 8 is used in place of the condenser (section 2.1.7) of Method 5. - (ii) All applicable procedures in Method 8 for the determination of SO_2 (including moisture) are used: - (4) For Method 6, Method 6C may be used. Method 6A may also be used whenever Methods 6 and 3B data are specified to determine the SO_2 emission rate, under the conditions in paragraph (d)(1) of this section. - (5) For Method 7, Method 7A, 7C, 7D, or 7E may be used. If Method 7C, 7D, or 7E is used, the sampling time for each run shall be at least 1 hour and the integrated sampling approach shall be used to determine the O_2 concentration (O_2) for the emission rate correction factor. - (6) For Method 3, Method 3A or 3B may be used. - (7) For Method 3B, Method 3A may be used. [54 FR 6662, Feb. 14, 1989; 54 FR 21344, May 17, 1989, as amended at 55 FR 5212, Feb. 14, 1990; 65 FR 61752, Oct. 17, 2000] # Subpart Da—Standards of Performance for Electric Utility Steam Generating Units for Which Construction is Commenced After September 18, 1978 SOURCE: 44 FR 33613, June 11, 1979, unless otherwise noted.